Problem 4.28

Show that any open or closed interval in E^n is connected.

proof: Let $X \in I \subset E^n$, I is an open interval. For any point y in I, define the line segment between X and Y as $S(x,y) = \{\lambda X + (I-\lambda)y : 0 < \lambda < I\} \subseteq I$ Let $f: [0, I] \mapsto E^n$, $f(\lambda) = \lambda X + (I-\lambda)y = S(x,y)$ f is continuous in $[0, I] \Rightarrow f[0, I]$ is connected, i.e [Sxy] is connected. Then [I] [I]

 $\forall y \in I$, $y \in S(x,y) \subset \bigcup_{y \in I} S(x,y)$ $\Rightarrow I \subset \bigcup_{y \in I} S(x,y)$.

Let
$$y \in I$$
, $y \in (0,1) \times (0,1)$ and $x \in (0,1) \times (0,1)$
then $\lambda \propto \in (0,\lambda) \times (0,\lambda)$
 $(1-\lambda) y \in (0,1-\lambda) \times (0,1-\lambda)$
 $\Rightarrow \lambda \propto + (1-\lambda) y \in (0,1) \times (0,1)$
i.e. $\lambda \propto + (1-\lambda) y \in I$, $\forall \lambda \in [0,1]$
then $S(x,y) \subset I$
 $\Rightarrow US(x,y) \subset I$.
Thus, $US(x,y) = I$

Problem 4.41

 $f_{k}: E \mapsto R$, $f = \lim_{k \to \infty} f_{k}$, E compact. f and f_{k} are continuous. $f_{i}(p) \leq f_{z}(p) \leq \cdots \leq f_{k}(p) \leq \cdots \quad \forall p \in E$. Prove that $f_{k} \Rightarrow f$ uniformly.

proof: Let E > 0, $P_1, P_2 \in E$.

① $f = \lim_{k \to \infty} f_k \Rightarrow \exists K \in \mathbb{N}, s.t. k > K$ $\Rightarrow d(f(p), f_k(p)) < \overline{3}$.

② $f, f_k \text{ continuous in } E, E \text{ compact } \Rightarrow$ $f, f_k \text{ are uniformly continuous in } E. \Leftrightarrow$ $\exists \delta_1 > 0$, $s.t. d(p_1, p_2) \Rightarrow d(f(p_1), f(p_2)) < \overline{3}$ $\exists \delta_2 > 0$, $s.t. d(p_1, p_2) \Rightarrow d(f_k(p_1), f_k(p_2)) < \overline{3}$ Choose $\delta = \min \{\delta_1, \delta_2\}$. $d(f_k(p_1) - f(p_1)) \leq d(f_k(p_1), f_k(p_2)) + d(f_k(p_2), f(p_2))$

 $<\frac{\mathcal{L}}{3} + \frac{\mathcal{L}}{3} + \frac{\mathcal{L}}{3} = \mathcal{E}.$ Since $f_1(p) \le f_2(p) \le \dots \le f_k(p) \le \dots$ $d(f_k(p_i), f(p_i)) > d(f_k(p_0) - f(p_0)), \forall k \in \mathbb{N}$

Since E is compact, $E \subset \bigcup_{k=1}^{n} B_{F_k}[p_k]$. Take $N = \max\{K(p_1), K(p_2), \dots, K(p_n)\}$. If n > N, n > NkLet $\alpha \in E$, $\alpha \in B_{F_k}[p_k]$ for some $1 \le k \le n$. $\Rightarrow |f_n(\alpha) - f_n(\alpha)| < C$ since $n \ge K(p_k)$. Problem 5.9

 $f: U \mapsto \mathbb{R}$, $g: U \mapsto \mathbb{R}$, f & g are differentiable in U. U open. $a \in U$.

 $\lim_{x \to a} f(x) = \lim_{x \to a} g(x) = 0.$

Prove that

$$\lim_{x \to a} \frac{f(x)}{g(x)} = \lim_{x \to a} \frac{f'(x)}{g'(x)}$$

if the right limit exists.

Proof